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Abstract: Safety and reliability are still key concerns for the Lithium-ion (Li-ion) battery systems in spite 

of their current popularity as energy storage solutions for transportation and other applications. To 

improve the overall reliability of the Li-ion batteries, the Battery Management Systems (BMS) should 

have the capabilities to detect different types of faults. Some of these faults can lead to catastrophic 

scenarios if they are not diagnosed early. In this paper, a stochastic approach of quantized systems is 

proposed for fault detection in Li-ion batteries. The scheme uses a quantized stochastic model derived 

from the equivalent circuit model of the battery to predict the most probable future states/outputs from 

the measured inputs and quantized outputs. Fault detection is achieved via comparison of the expected 

event and the actual event. To illustrate the effectiveness of the approach, the model parameters for 

commercial Li-ion battery cell have been extracted from experiments, and then faults are injected in 

simulation studies.  
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

1. INTRODUCTION 

Lithium-ion (Li-ion) battery technology is the leading 

candidate for energy storage in electrified automotive 

applications especially in Hybrid and Electric Vehicles 

(H/EVs). Several advantages such as high specific energy and 

power, low self-discharge, no memory effect, negligible 

environmental impact have made Li-ion batteries an 

attractive energy storage solution as compared to other 

battery chemistries. However, Li-ion batteries still suffer 

from the shortcomings of safety and reliability, which 

necessitates the need for advanced Battery Management 

Systems (BMSs) with diagnostic capabilities. These BMSs 

should be able to detect the faults in the batteries to help 

improve the overall reliability of the system. Different types 

of faults can happen in a Li-ion battery such as internal faults, 

sensor faults and actuation faults, which lead to battery 

degradation and potentially unsafe situations including many 

reported fires. This paper deals with one approach to the 

detection of these faults.  

In battery literature, the real-time diagnostic problem in Li-

ion batteries is much less discussed as compared to 

estimation and control problems. Diagnostics related 

challenges for Li-ion batteries are discussed in Alavi et al. 

(2013a). An observer-based fault detection scheme for sensor 

and actuation faults is presented in Markicki et al. (2010). A 

multiple model based adaptive estimation scheme is proposed 

in Singh et al. (2013) for over charge and over discharge 

faults. In Mukhopadhyay and Zhang (2012), terminal voltage 

collapses has been diagnosed using Universal adaptive 

stabilization techniques. A bank of observers has been used 

for simultaneous fault isolation and estimation in a battery 

string in Chen et al. (2014). In Alavi et al. (2013b), a particle 

filter based approach is used for detecting Li-plating. 

Diagnostic algorithms for the detection and isolation of 

sensor faults are presented in Lombardi et al. (2014). In Dey 

et al. (2014), the authors of the present paper developed a 

sliding mode observer based approach for detection and 

estimation of sensor faults.  

In this paper, we propose an alternative approach for Li-ion 

battery fault detection based on a stochastic quantized 

modeling approach to detect sensor as well as internal faults 

in the Li-ion battery. Specifically, the stochastic modeling 

approach proposed by Mohon and Pisu (2013, 2014) for a 

quantized system is adopted for the present battery 

application. First, the continuous equivalent circuit model of 

the Li-ion battery is quantized into discrete states in order to 

simplify diagnostic efforts as explained in Blanke, et al 

(2006).  This quantized stochastic model is then used to 

predict the most probable future state after a small time Δt 

using the measured inputs and quantized outputs. Here future 

states mean the states the system can transition into with 

probability greater than zero.  One of these future states will 

have the largest probability and will be the most probable 

future state.  Then, fault is detected through comparison of 

the expected future event and the measured state at Δt.   

The advantages of this approach are less computational 

burden and ease of implementation.  First, this approach 

eliminates the need of multiple observers for fault detection 

(Dey et al. 2014).  Only the system state space equations are 

needed.  Also, the nature of the quantization approach allows 

measurements to be uncertain within a quantized region 

while still achieving fault diagnosis.  The use of uncertain 

measurements means the approach is robust to noise as well.  

The new method of calculating state transition probabilities is 

less computationally burdensome than previous methods 

explored for general quantized systems such as Monte Carlo 

simulations and Generalized Cell Mapping method (Lunze, et 
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al 2004 and Blanke, et al 2006). Therefore, by decreasing the 

accuracy of measurements needed and the amount of 

computations necessary to find preferred state transitions, the 

approach is less computationally intensive.  However, a trade 

off exists between the memory requirement to store the 

necessary probability transition matrix and the minimal 

detectable fault size with this new approach. 

Another practical motivation for using this quantization 

approach is the inherent nature of sensor measurements.  The 

measured value from a sensor and the actual value will 

always differ by some small amount depending on the 

accuracy of the sensor used.  Therefore, the sensor 

measurement range is always quantized.  As long as the 

sensor measures within a certain small range, it will observe 

the same value.  The quantized system diagnostics approach 

allows for cheaper, less accurate sensors to be used to solve a 

system diagnostic problem. 

The rest of the paper is organized as follows.  In Section 2, 

modeling and the diagnostics problem is formulated for Li-

ion batteries.  Section 3 details the stochastic quantized 

modeling approach for diagnostics.  Section 4 presents 

simulation results that validate the effectiveness of the 

approach.  Section 5 concludes the paper. 

 

2. MODELING AND DIAGNOSTIC PROBLEM 

FORMULATION 

In the current literature, different kinds of models can be 

found for Li-ion batteries. Arguably, the most accurate type 

of model is based on the electrochemical principles (Doyle et 

al. 1993). However, due to its complex mathematical 

structure and requirement of high computation burden, it is 

seldom used in real-time designs. There are other types of 

models that try to mimic the phenomenological behaviour of 

batteries. One such popular kind of model is the equivalent 

circuit model where the battery cell is represented as an 

electrical circuit (Liaw et al. 2004 and Dubarry et al. 2009). 

This kind of model is simple for real-time design and is 

convenient from computational cost perspective. In this 

paper, an electrical circuit model is considered for a Li-ion 

battery cell along with its lumped thermal dynamics. The 

electrical equivalent circuit model is shown in Figure 1. 

 

Figure 1. Electrical equivalent circuit model 

 

Considering Figure 1 and using Kirchoff’s law, the 

electrical dynamics of the battery cell can be given as: 
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where V is the terminal voltage, I is the input current, R, R0 

and C0 are the resistors and capacitors of the electrical circuit,  

Vc is the voltage across the capacitor C0, E0 is the open-

circuit voltage. The State-of-Charge (SOC) evolution 

equation can be written as: 

 
d SOC I

dt Q
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(2) 

where Q is the capacity of the battery cell. The lumped 

thermal model of the battery cell can be derived from the 

energy balance and is given by: 
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(3) 

where 𝑇𝑇 is the lumped battery cell temperature,  𝑚𝑚 is the 

mass, 𝑐𝑐 is the specific heat capacity of the battery cell, ℎ𝐴𝐴 is 

the effective heat transfer coefficient and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  is the ambient 

temperature.  

In general, all the circuit elements of the battery cell are 

functions of 𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑇𝑇. However, in this paper, we restrict 

the discussion to a Hybrid Electric Vehicle (HEV) type 

application, where we can reasonably assume those circuit 

elements to be constant within the operating range (narrow 

SOC windows). Furthermore, the open circuit voltage is 

taken as a linear function of SOC within the operating range: 

 0 1 2E SOC  

 

(4) 

where 𝛼𝛼1 and 𝛼𝛼2 are known constants which can be 

determined from the experimental data of the battery cell. 

The faulty scenario in a Li-ion battery can be modelled as: 
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(5) 

where f𝑉𝑉 and f𝑇𝑇 are the additive faults to the voltage and 

temperature dynamics, respectively. 

The states of the battery model can be written in the 

following form so that, apart from input current I, the two 

states are clearly decoupled from each other. 

 
1
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(6) 

 

3. STOCHASTIC MODELING APPROACH FOR 

QUANTIZED SYSTEMS 

In this section, we describe the idea of stochastic modeling 

approach for quantized systems. The goal is to diagnose a 
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continuous system shown in Figure 2 (Blanke, et al 2006) 

where u(t) is the input at time t, f(t) is the amount of fault at 

time t, and z(t) is the output at time t. 

 

Figure 2.  Diagnostics of quantized system 

Referring to Figure 2, the output z(t) can be quantized by 

passing it through the quantizer where we denote the 

quantized output as [z(t)]. Now, we will illustrate the 

approach by considering a case with two outputs. Denoting 

the outputs as z1(t) and z2(t), a plot of quantized outputs z2 vs 

z1 is shown in Figure 3.  Note that, output z1(t) and z2(t) are 

quantized into intervals denoted by ‘1’ through ‘9.’  The grey 

section in Figure 3 essentially represents the current 

quantized state for the system.  Based on the behavior of the 

input signal u(t), the quantized state will transition from the 

grey quantized state to another quantized state.  As time 

evolves, the quantized state will transform to a new location 

according to the system equations that could possibly overlap 

many quantized states.  Essentially, the quantization of the 

state space introduces stochastic behavior.  From our sensor 

measurements, we only know which quantized state is 

occupied, not where inside the quantized state. Quantization 

also shows that one quantized state can transition to many 

quantized states.  The evolution of the system will not be 

deterministic now.  Of course some states will be more 

favorable for the system to transition into (like state 6) and 

the probabilities of these transitions are of interest for 

diagnostics.  The transition probabilities from one quantized 

state to another can be arranged in a probability transition 

matrix.  If a transition occurs that has very low probability, 

then the presence of a fault can be inferred.  Next, we will 

detail the method to develop probability transition matrices. 

 

Figure 3:  Example of quantizing two outputs 

The example given in Figure 3 will be simplified for ease of 

explanation.  Suppose z2 is unobservable output from the 

continuous system.  Only the maximum and minimum values 

of z2 are known.  Output z2 is still quantized into intervals or 

states numbered ‘1’ through ‘5’ as before.  The main 

difference between Figure 3 and Figure 4 is that now only 

vertical transitions are allowed in Figure 4.  Horizontal 

transitions are not considered in this first work. 

 

Figure 4.  Graph of quantized system with flow definitions 

In this paper, some assumptions about transitions are taken.  

We assume that with each event, which in our case is one 

time step, the current state z can only transition to adjacent 

states z’ or remain in the same state z.  The state may not 

transition to nonadjacent states. Proper selection of quantized 

states depends on the system. We choose the quantized states 

such that a healthy system only transitions to adjacent states. 

The objective of the proposed method is to calculate the 

probability of transitioning from one state to another 

allowable state.  A two-dimensional form of the divergence 

theorem can be used to calculate transition probabilities. The 

theorem is stated in Eq. (7). 

    
A C

F dA F n dr   

 

(7) 

where C is a closed curve, A is the 2D region in the plane 

enclosed by C, 𝑛̅𝑛 is the outward pointing normal vector of the 

closed curve C, and 𝐹̅𝐹 is a continuously differentiable vector 

field in region A.  A graph of the 2D divergence theorem is 

shown in Figure 5.  This yields a 2D space with desired 

upward and downward flows consistent with the system in 

Figure 4.  As stated above, for the results in this paper, the 

flow through the left and right sides of the area A in Figure 5 

will be assumed to be zero. 

 

Figure 5.  Illustration of the divergence theorem in 2D  

Vector field 𝐹̅𝐹 describes the flow in and out of the current 

state z along the boundaries of the quantized regions.  For a 

system with two states z1 and z2 and one input u, vector field 

𝐹̅𝐹 is defined as Eq. (8) where 𝑖𝑖̂ and 𝑗𝑗̂ are coordinates of vector 
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Referring to Figure 2, the output z(t) can be quantized by 

passing it through the quantizer where we denote the 

quantized output as [z(t)]. Now, we will illustrate the 

approach by considering a case with two outputs. Denoting 

the outputs as z1(t) and z2(t), a plot of quantized outputs z2 vs 

z1 is shown in Figure 3.  Note that, output z1(t) and z2(t) are 

quantized into intervals denoted by ‘1’ through ‘9.’  The grey 

section in Figure 3 essentially represents the current 

quantized state for the system.  Based on the behavior of the 

input signal u(t), the quantized state will transition from the 

grey quantized state to another quantized state.  As time 

evolves, the quantized state will transform to a new location 

according to the system equations that could possibly overlap 

many quantized states.  Essentially, the quantization of the 

state space introduces stochastic behavior.  From our sensor 

measurements, we only know which quantized state is 

occupied, not where inside the quantized state. Quantization 

also shows that one quantized state can transition to many 

quantized states.  The evolution of the system will not be 

deterministic now.  Of course some states will be more 

favorable for the system to transition into (like state 6) and 

the probabilities of these transitions are of interest for 

diagnostics.  The transition probabilities from one quantized 

state to another can be arranged in a probability transition 

matrix.  If a transition occurs that has very low probability, 

then the presence of a fault can be inferred.  Next, we will 

detail the method to develop probability transition matrices. 

 

Figure 3:  Example of quantizing two outputs 

The example given in Figure 3 will be simplified for ease of 

explanation.  Suppose z2 is unobservable output from the 

continuous system.  Only the maximum and minimum values 

of z2 are known.  Output z2 is still quantized into intervals or 

states numbered ‘1’ through ‘5’ as before.  The main 

difference between Figure 3 and Figure 4 is that now only 

vertical transitions are allowed in Figure 4.  Horizontal 

transitions are not considered in this first work. 

 

Figure 4.  Graph of quantized system with flow definitions 

In this paper, some assumptions about transitions are taken.  

We assume that with each event, which in our case is one 

time step, the current state z can only transition to adjacent 

states z’ or remain in the same state z.  The state may not 

transition to nonadjacent states. Proper selection of quantized 

states depends on the system. We choose the quantized states 

such that a healthy system only transitions to adjacent states. 

The objective of the proposed method is to calculate the 

probability of transitioning from one state to another 

allowable state.  A two-dimensional form of the divergence 

theorem can be used to calculate transition probabilities. The 

theorem is stated in Eq. (7). 

    
A C

F dA F n dr   

 

(7) 

where C is a closed curve, A is the 2D region in the plane 

enclosed by C, 𝑛̅𝑛 is the outward pointing normal vector of the 

closed curve C, and 𝐹̅𝐹 is a continuously differentiable vector 

field in region A.  A graph of the 2D divergence theorem is 

shown in Figure 5.  This yields a 2D space with desired 

upward and downward flows consistent with the system in 

Figure 4.  As stated above, for the results in this paper, the 

flow through the left and right sides of the area A in Figure 5 

will be assumed to be zero. 

 

Figure 5.  Illustration of the divergence theorem in 2D  

Vector field 𝐹̅𝐹 describes the flow in and out of the current 

state z along the boundaries of the quantized regions.  For a 

system with two states z1 and z2 and one input u, vector field 

𝐹̅𝐹 is defined as Eq. (8) where 𝑖𝑖̂ and 𝑗𝑗̂ are coordinates of vector 
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field 𝐹̅𝐹 and functions f1 and f2 are defined by states z1 and z2 

from the system state space model. 

 

 

(8) 

Calculating the line integrals over side 1 and side 2 

boundaries in Figure 4 will determine flow into and out of 

state z.  We define outward flow φ+ as a positive value and 

inward flow φ- as a negative value.  Each side of the 

quantized state may have outward and inward flows with a 

transition point z** or z* where flow is zero as shown in 

Figure 4.  The transition point is necessary for correct limits 

of integration in line integral calculations for flow in and 

flow out on each side.  Without loss of generality, assume f2 

< 0 if z1 < z*,z** and f2 > 0 if  z1 > z*,z** such that Eq. (9) 

holds.  The inward and upward flow through each 

components of the state z is shown in Eq. (10). 
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(2),u) = 0
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(10) 

We can gather the inward and outward flows to define φin, 

φout, and φtotal in Eq. (11).  These will be used to build 

probabilities.   

 

1 2

1 2

_

1 1 2 2
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out

total
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 

 

  

 

 

   

 

(11) 

We can interpret the concept of probability as counting the 

number of a certain type of occurrence and then normalizing 

by total number of occurrences of all types.  Suppose the 

occurrences of outward and inward flow are normalized by 

the total flow.  For example, the probability to transition 

down will be defined as the outward flow through side 1, φ1
+ 

, divided by the total flow φtotal.  Now define z as the state 

below current state z and z as the state above state z.  The 

probability to remain in state z, transition up, or transition 

down in the next time step is given in Eq. (12). 

 
1 2 2 1

1

1

1 Pr( ' | ) Pr( ' | )

Pr( ' | )

in out

total total

total total total

z z z z z z

z z z

 
 

   
  

   





 


  

   

 
 

(12) 

These probabilities are calculated at each time step using the 

current quantized state and current input.  With this 

information, a time-varying probability transition matrix 

named L can be organized as shown in Table 1. 

Table 1. Example of probability transition matrix L for 

current state z=2 at a time t 

 

When the output state from data transitions to a state other 

than the predicted state from matrix L, then a fault is 

probably present.  We can therefore detect faults using the 

residual in Eq. (13) where [y] is the quantized output state 

from data and [ypredicted] is the predicted state with largest 

probability from probability transition matrix L.  When the 

residual is nonzero and the probability from matrix L is high, 

a fault is most likely occurring in the system.  This residual 

should be computed for every dimension that is chosen to be 

quantized.  In this example, only z2 is quantized and therefore 

only a residual in the z2 direction is used. 

 [ ] [ ]predictedr y y 

 

(13) 

While the above discussion detailed how to use the stochastic 

modeling approach for a quantized two-dimensional system, 

it can be simplified for a quantized one-dimensional system 

as well.  However, the quantized boundaries no longer have 

lengths in a second dimension.  Therefore, the line integrals 

in Eq. (10) collapse to an antiderivative at a point and no flow 

transition points exist on the quantized boundaries. 

Finally, we extend the aforementioned method to fault 

detection in Li-ion batteries.  This requires quantization of 

the electrical and thermal dynamics given in Eq. (1) and Eq. 

(3), respectively.  Note that we have temperature 

measurement directly from the system, which we shall use to 

predict the most probable future state.  However, for the 

equivalent capacitor voltage Vc, we do not have direct 

  Future State z’ 

  1 2 3 4 5 
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2 Pr(z ' = z- | z)
 

Pr(z ' = z | z)

 

Pr(z ' = z+ | z)
 

0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 
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measurement.  We use the following equation to estimate Vc 

from the measurement of terminal voltage V. 

 , 0c estimatedV E IR V  

 

(14) 

The schematic of the diagnosis scheme is shown in Figure 6. 

 

Figure 6:  Diagnostic scheme for Li-ion battery fault 

detection 

4.  SIMULATION RESULTS 

To validate the effectiveness of the proposed diagnostic 

scheme, a commercial Li-ion battery is used from which we 

extracted the parameters using experimental data of voltage, 

current and temperature. This particular Li-ion battery cell 

has the following characteristics: LiFeP4-Graphite chemistry, 

3.3 V, 2.3 Ah, maximum discharge current 70 A. To extract 

the battery model parameters, an optimization problem was 

solved minimizing the difference between experimental and 

model-simulated data.  The identified parameters are 

R=0.206 , R0=0.008 , C0=12000 F, 1=2.939, and 

2=0.01939. 

After extracting the battery model parameters, simulation 

studies were conducted in which faults were injected. Two 

different fault cases have been used to verify the diagnostic 

approach. First, an additive fault has been injected in the 

thermal model at t = 200 sec (fT=0.0001). The residual 

response to the fault is shown in Figure 7. Note that, the 

residual is zero under non-faulty conditions (t = 0 to 200 sec) 

and becomes nonzero after the fault occurrence at t = 200 sec. 

Next, an additive fault has been injected into the electrical 

model at t = 200 sec (fV=0.001). The residual response for the 

fault is given in Figure 8. As expected, the residual goes up 

from zero to a nonzero value after the fault occurrence. Note 

that, there is a delay in this residual response. This is due to 

the particular choice of quantization step we used. Note that, 

in this proposed approach the main tuning variable is the 

quantization step. The particular selection of the quantization 

step dictates the minimum detectable fault size.  

 

Figure 7:  Residual for temperature fault (fT) 

 

 

Figure 8:  Residual for voltage fault (fV) 

 

5. CONCLUSIONS 

In this paper, a fault detection scheme based on a quantized 

stochastic modeling approach has been applied for Li-ion 

batteries. This scheme used a quantized stochastic model 

derived from the equivalent circuit model to predict the most 

probable future states/outputs from the measured inputs and 

quantized outputs. Fault detection is achieved by generating 

transition probability matrices and comparing the values of 

the expected event and the actual event.  The effectiveness of 

the approach is illustrated via simulation studies using 

experimentally identified parameters of a commercial Li-ion 

battery. 

Although the simulation studies have shown promising 

results, there are some aspects, which can be considered as 

future work of this study. First, no modeling uncertainties 

have been considered in this diagnostic scheme. To make the 

scheme more effective in real-time scenarios, modeling 

uncertainties should be taken into account. Next, the 

approach will be experimentally validated via real-time 

computations to verify the trade-offs identified between 

quantization steps and the minimum detectable fault sizes.  . 
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